
3. WAVE PROPAGATION 

Abstract — This paper investigates the representation of the 
dielectric boundary and absorbing boundary conditions (ABC) in 
the nonstandard FDTD (NS-FDTD) method. The effective 
permittivity model of the boundary is examined and it is found 
that its accuracy decreases when the dielectric boundary 
coincides with a node. To overcome this difficulty, we propose an 
alternative, highly accurate boundary model. The accuracy of the 
perfectly matched layer (PML) as an ABC is also demonstrated 
in the NS-FDTD algorithm. 

I. INTRODUCTION 

The NS-FDTD method is a time-domain analysis 
technique for electromagnetic waves with a fixed frequency 
[1]. The solution error is less than 410  that of the standard 
FDTD method on a coarse grid. However, the accuracy of the 
method is only preserved in homogeneous media. When 
dielectric interfaces exist in the calculation area the accuracy 
of the NS-FDTD method is dependent on the accuracy of the 
media boundary model. A rigorous boundary model based on 
the NS-FDTD algorithm has not been developed yet, therefore, 
the effective permittivity model [2] originally developed for 
the FDTD method has been applied to the NS-FDTD analysis 
[1]. Same discussion stands for PML [3]. However, the 
validity of this approach for NS-FDTD calculations has not 
been verified.  
      In this paper, we examine the validity of the effective 
permittivity boundary model by using a two-dimensional NS-
FDTD analysis of a dielectric slab. It is found that the model 
has poor accuracy when the interface coincides with a node. 
To overcome the difficulty, we propose an accurate boundary 
model based on the continuity of the fields along the boundary. 
It is shown that our method can reduce the error of the 
effective permittivity boundary model. For analysis of open 
regions the characteristics of the PML [3] are also investigated.  

II. CHARACTERISTIC OF THE DIELECTRIC BOUNDARY MODEL 

A.  Effective Permittivity Model  

      Fig. 1 shows the effective permittivity model [2] using the 
fractions of 1,2  in the cell for the FDTD method. Fig. 2 

indicates the relative positions of the boundary and E, H-field 
nodes. In Fig. 3, the transmission rate versus incident angle is 
shown for /4   and 0   obtained by various methods 

along with the reference value obtained by the transmission 
matrix method [4]. It is seen that the effective permittivity 
model agrees well with reference value when /4  , 

however, the accuracy is low when 0  . 

B. Proposed Boundary Model 

  In order to overcome the low accuracy when 0  , we 

propose a model based on the continuity of the tangential and 

time derivative components of the fields on the boundary [5]. 
We introduce the virtual fields, (I) ( /2)yH x  and (I) ( /2)zE x , 

straddling the interface for the NS-FDTD calculation of (I)
r - 

side. They are given as 

 
Fig. 1. The effective permittivity r  model for the FDTD method [2]. Here, 

1,2V  are the fractions of 1,2  in cell. 

  
Fig. 2. Relative positions of the dielectric boundary and E, H-field nodes for 
TMz mode in cell.  is the offset from center node of cell to dielectric 
boundary. 

       

     
Fig. 3. Comparison with the effective permittivity model and our proposed 
model with N=3 and M=2 in the analysis of a dielectric slab by the NS-FDTD 
method with /20 . Here, the effective permittivity model is the parallel 

case (a) in Fig. 1. 
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where (1a) is for case A and (1b) is for case B in Fig. 2. 
(II) ( / 2)yH x  and (II) ( / 2)zE x  for (II)

r -side can be derived in 

the same manner. The derivations of na , nb , and (1) are 

shown in the appendix. Here, N=3 and M=2 were used in (1). 
It is seen in Fig. 3 that our model can reduce the error of the 
effective permittivity model when the dielectric interface is on 
an E or H-node. 

III. CHARACTERISTICS OF THE PML 

   Fig. 4 shows the reflection rate of the field-splitting type 
PML in the NS-FDTD method. The evaluation conditions of 
the PML are loss ( ) ( / )mx x d  , ( 1) ln (0) /2opt m R d   with 

16(0)R e  and     [3]. Although the variation of ( )x  

that straddles two cells is ignored, the field-splitting type PML 
conditions for the FDTD method are valid in the NS-FDTD 
method. Values of m=3-4 and 0.75 opt   are optimal as 

shown in Fig. 4. 

 
Fig. 4. Reflection rate of the field-splitting type PML in two-dimensional NS-

FDTD method. PML width is 10d   . Here, /10   and 0 incidence. 

IV. CONCLUSION 

   We have investigated the effective permittivity model 
(EPM) and PML boundary condition that are major concerns 
in the NS-FDTD method. It has been shown that EPM is 
useful in the NS-FDTD method, but the accuracy deteriorates 
when the boundary is on a node. To overcome this difficulty, 
we have proposed a useful complementary model for EPM. 
We have also studied the PML, and it has been confirmed 
numerically that the field-splitting type PML is valid in the 
NS-FDTD method. 
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APPENDIX 

In Fig. 2, the value of ( )f x   on the boundary is 

expressed by using a Taylor series. For third order ( 3N  ) 

approximation,  
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( )Rf x   is obtained from (2) of right-hand side nodes in Fig. 

2. Here, ( )nf  ( )n n

x x
f x x

 
  . In a similar manner, ( )Lf x   

is given from ( /2)f x  and ( (2 1) /2)f x n    of left-hand side. 

By the continuity of ( ) ( )R Lf x f x , we obtain generally 
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where f  means the virtual value on nodes beyond the 
boundary. Next, the continuity condition for (z yE t H x      

)xH y    of the Mth-order on the dielectric interface by 

using (2) is 
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For the continuity of   /y zH t E x       on the interface, it is 
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(1a) is obtained from (3) and (4). The pair of (3) and (5) give 
(1b). Here, the coefficients for 3N  and 2M   in (1) are 

3 2 2 3 3
0 ( ) (15 46 36 8 ) / 48Ra           , 

3 2 2 3 3
1( ) (15 14 28 8 ) /16Ra           , 

3 2 2 3 3
2 ( ) (5 2 20 8 ) /16Ra            , 

3 2 2 3 3
3( ) (3 2 12 8 ) / 48Ra            , 

2
0 ( ) ( ) /Rb      , 2

1( ) ( 2 ) /Rb     , 2
2 ( ) /Rb    ,  (6) 

where ( ) ( )Ln Rna a    and ( ) ( )Ln Rnb b    . 


